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Triplet correlation functions for hard spheres: Comparison of different approaches
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We present numerical results of a comparison between several approximations for the determina-
tion of the triplet correlation functions of a simple liquid, which have been proposed during recent
years; the system we have considered is a simple hard-sphere system. Two of the methods (one
proposed by Barrat, Hansen, and Pastore [Phys. Rev. Lett. 58, 2075 (1987); Mol. Phys. 63, 747
(1988)], and the other one based on a formal density expansion of the triplet distribution function)
are purely numerical; the other two methods are based on a density-functional theory (reproducing
both thermodynamics and pair structure of the Wertheim-Thiele description of hard spheres) and
provide for this special system analytic expressions of the triplet direct correlation function in ¢
space. If the triplet configurations are not too close (i.e., at most one direct contact between the
spheres), we find good agreement between the different methods; this is quite remarkable since these
approximations have completely different conceptual origins. If, however, the three particles form
configurations with rather short interparticle distances the differences in the results may become
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quite substantial.
PACS number(s): 61.20.Gy, 61.20.Ne

I. INTRODUCTION

Attempts of liquid-state physicists to determine the
triplet correlation function (TCF’s) of a simple liquid
date back to the end of the 1950s; ever since, several
approaches have been proposed to solve this problem [1-
13]. While nowadays the pair correlation functions of
a simple liquid can be determined in a very consistent
way (thanks to a large number of rather sophisticated
methods which have been proposed during the past thirty
years and which have been discussed widely in literature,
cf., e.g., Hansen and McDonald [14]), we are in the triplet
case at the beginning; this is, to a large extent, due to
the mathematical and computational complexity of the
problem. In the pair case we have arrived at a level where
different methods yield—for a great variety of potentials
of simple liquids—both for thermodynamics and struc-
ture results which agree within numerical accuracy, even
though these methods originate from completely differ-
ent roots (as, e.g., computer simulations, perturbation
theories, or integral-equation techniques; cf., e.g., Talbot
et al. [15]). The increasing interest in TCF’s during the
past years may be partly attributed to the actual compu-
tational power of supercomputers: realization of several
approaches which were proposed already some time ago
and then were too time consuming has now come into
reach; nevertheless, the determination of the full triplet
structure is—in contrast to the pair structure—still far
from being a standard problem: according to the infor-
mation available in the literature and according to our
experience the accurate determination of the TCF’s from
this contribution is still a time- and storage-consuming
problem both for numerical [5, 16] and simulation meth-
ods [9, 17]. Therefore it is not surprising that numerical
data on the triplet structure determined by the different
methods mentioned above are still rare. This holds espe-
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cially for computer simulation data, a fact which is even
more deplorable since in liquid-state physics such results
are indispensable to check the realiability of a proposed
method.

Since only a few computer simulation data of the
triplet structure of simple liquids are available [9, 18], we
have devoted this contribution to a study in which dif-
ferent numerical methods are compared. Even though a
comparison with simulation data would be a more strin-
gent test of the reliability of a numerical method, this
study might also give—for lack of computer simulation
data—an idea of how consistent the picture is which
emerges from present-day methods for the determination
of TCF’s. The system we have chosen is described by
the most simple model interaction available, i.e., by a
hard-sphere (HS) potential, which still plays—despite of
its simplicity—a key-role in liquid-state physics, e.g., as
a reference system in perturbation theories or integral-
equation techniques when determining thermodynamics
and pair structure of simple liquids; perhaps, one day
this system might serve as well as a reference system for
the triplet structure of liquids with soft interactions, if
respective theories are developed. The choice for this
system is justified by the facts that (i) HS’s are charac-
terized by one single parameter (the packing fraction 7),
thus facilitating both the scanning of the parameter space
and the presentation of the data and (ii) both pair struc-
ture and thermodynamics (which, as we will see, serve as
input for the different methods treated here) are available
in analytic expressions, based on the analytic solution of
the Percus-Yevick (PY) equation for HS’s [19]. (Further-
more, the knowledge of these analytic expressions also
allows in some of the methods treated here an analytic
representation of the TCF’s. In order to preserve this
advantage we do not take into account other expressions
[20] which were derived to parametrize the pair structure
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of HS obtained in computer experiments.)

In this study we have considered four methods: the
first approximation, due to Barrat, Hansen, and Pas-
tore (BHP) [3, 4], is based on a factorization ansatz of
the pair direct CF (PDCF') ¢(r), which is the only input
required. In our case, we know this function from the
Wertheim-Thiele solution [19]. From the factor-function
t(r) the triplet distribution function (TDF) may be deter-
mined via the generalized Ornstein-Zernike (OZ) relation
[4,21]). The second method, based on work by Abe [22]
and Salpeter [23] starts from a formal density expansion
of the TDF: to lowest order we recover the well-known
Kirkwood superposition approximation (SA) [24], with
correcting terms expressed as h(?)-bond diagrams [h(? (r)
is the total CF], which become rapidly more complicated
as the order of the expansion rises. The other two meth-
ods are based on density-functional (DF) theory for the
free energy of inhomogeneous liquids (for an overview
see, e.g., Evans [25]). The excess free-energy functional is
constructed to reproduce both thermodynamics and pair
structure of the homogeneous HS liquid in the framework
of the PY theory; the n-particle CF is then obtained from
the nth-order functional derivative of this functional with
respect to the density. Among the methods proposed in
literature [8-13] we have chosen those due to Denton and
Ashcroft (DA) [11] and Kierlik and Rosinberg (KR) [10].
For both of them the energy functional is an analytic ex-
pression for this specific system; hence the triplet DCF
(TDCF) may be calculated for the HS system in ¢ space
analytically. The TDF, as a function in r space, is again
obtained via the generalized OZ relation [4, 21]. Several
methods based on DF theory [10, 13] have already been
compared to recent, very accurate computer experiments
by Rosenfeld, Levesque, and Weis [9] in ¢ space; we find,
however, from these results that none of these methods
is able to provide a convincing overall agreement, which
would confirm one of them as being definitively superior
to the others.

In the first part of this study we have investigated the
angular dependence of the results: we have compared the
above-mentioned methods for two different systems char-
acterized by n = 0.3 and 0.45, considering for both cases
six different triplet configurations (the triangles being de-
fined by two fixed sides and an angle which varies between
0 and 7). These configurations are rather general ones,
i.e., triangles with at most one direct contact between the
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spheres, i.e., not too close structures. We find in all these
cases—if we leave for the moment the pure SA out of
consideration—an astonishingly good agreement, which
is the more surprising as all the methods originate from
different concepts. In the study on the radial dependence
we consider both isosceles and general triangles (with one
side being twice as large as the other and values for the
enclosed angle of /3, /2, and 27/3). The results of this
part of the study lead to the same conclusions as obtained
from the angular dependence. In a final comparison we
have considered configurations of “rolling contact,” for
which (not too recent) computer experiments exist [18];
they are, in turn, in extremely good agreement with a
method recently proposed by Attard [5]. Compared to
the general configurations mentioned above the situation
is now somewhat different: obviously these geometries
are more sensitive to the different nature of the methods
(however, qualitative agreement is still preserved). This
situation may be compared to the pair case where, e.g.,
PY and hypernetted-chain (HNC) approximations yield
strongly different results for the CF’s at contact, whereas
at longer distances (which correspond in the triplet case
to larger triangle configurations) these differences are not
so extreme.

The paper is organized as follows. In Sec. II we present
briefly the different methods used, leaving, however, a
closer description to the respective publications. Sec-
tion III presents our results and the paper is closed with
concluding remarks. An Appendix contains numerical
details of the actual calculations.

II. METHODS

A. General remarks

Henceforward we consider three particles (1, 2, and 3)
which form a triangle: its sides will be denoted by r, s,
and ¢t. All distances will be given in units of the hard-core
diameter, which is assumed to be unity.

The different CF’s in ¢ and r space are related via the
Ornstein-Zernike relations [4, 21], which read in ¢ space
for the two particle

h?(q) = &2 (q) + ph® (9)2®(q) (1)
and for the three particle (TOZ) case

A3 (g1, g2, a5 + az ) = AP (q1)RP (g2) + AP (q)RP (| qy + qz |) + AP (g2)RP (| @y + qy |)
& (qy,q2,] a1 + a2 |) + pE® (1)@ (¢2)eP (| a1 + a3 |)

1 - pe@ (@)L - pe@ (@)L —pe@ (e + a3 ] ®)

é®(q) and h?(q) [¢®(q,q',q") and A3 (q,q',q")] are
the pair (triplet) direct and total CF’s. Henceforward
carets represent Fourier transforms (FT’s), which are de-
fined via

1 iq-r £
£ = G / ¢i97 f(q)da,

flex) = (2m)8 / e'47e f(q,q')dadq’.

[

We want to point out that (2) is only one formulation
among several other equivalent expressions for the TOZ
[21]. R®)(r,s,t) is related to the TDF g®(r,s,t) via
R (r,5,t) = ¢ (r,5,8) — hR®(r) — h®(s) — R (t) — 1.

(4)

In the following we will briefly describe the different
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methods used (and implemented) for this study, leav-
ing, however, the details to the original papers. The
Appendix contains numerical parameters of the actual
calculations.

B. Methods
The first approximation is based on a formal density
expansion of g (r, s,t) due to Salpeter [23] and Abe [22].

The leading factor in this expansion is the Kirkwood SA
(24]

9@ (r,5,t) = g(r)g(s)g(t). (5)

J
Tl(r7sat;p) :D/L@ )
1

+

The open, unweighted circles (root points) represent
the three particles (i=1, 2, 3) at positions r; (r = |rys| =
[r1 — r2|,s = |riz| = |r; — r3|,t = |ra3| = |r2 — r3|);
the full, p-weighted circles (field points) represent par-
ticles over which integrations are performed (cf., e.g.,
Hansen and McDonald [14]). Including the first (second)
order term in (6) the respective approximations will be
denoted as SA1 (SA2). Going beyond second order in
(6) is completely hopeless: 73(r, s,t) contains ~ 100 dia-
grams, being much more complicated than those of (8).
The diagrams in (7) and (8) are conveniently evaluated
by means of a Legendre-expansion technique [26] in terms
of x = cos ¥, where ¥ is, e.g., the angle between ri, and
r13. The only input required is the function h(? (r) of the
HS system which has been obtained via a semianalytic
expression [27]: it allows an accurate evaluation of this
function up to 7 = 7 (where, even for higher densities,
R™)(r) is already practically zero).

BHP proposed the following ansatz for the TDCF in r
space [3, 4]:

c®(r, s,t) = t(r)t(s)t(t), _ (9)
where the function ¢(r) is determined from the relation

@
Oc ap(r) = t(r) / H(r)e(r — ') dr.

(10)

3
2
3 3 3
T2(7, 8,85 p) =/B\© % JFDA
1 2 1 2 1 2
3 3 3

ZAO ;A

1 2 1 2 1
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g(r) = g@(r) = h®(r) + 1 is the pair distribution func-
tions (PDF). The correcting terms to the SA (5) are or-
dered in powers of the number density p and are rep-
resented by cluster integrals whose bonds are Mayer f
bonds (f(r) = exp[—pBv(r)] — 1). Stell [1] has used a
topological reduction technique, replacing the f bonds
by h(® bonds which results in a drastic reduction of the
number of required A(?)-bond diagrams. Finally the ex-
pansion can be written as

g®(r,s,t) = g(r)g(s)g(t) exp <Z pri(ry8,t; p)) ., (6)
where 71(r,s,t; p) and 72(r, s,t; p) may be conveniently

expressed by diagrams where lines now represent h(2?
bonds:

()

+ : 8)
2 1 2

This equation is nothing else but the exact relation be-
tween c(® and ¢(® obtained from DF formalism [25] (see
below),

8c®(r) _

3) ’ I ’
% /c (', r — x|}, (11)

One may show that &) (g, q’, ¢"") agrees with the exact
TDCF at least up to second order in the wave numbers
[3,4]. Using for ¢ (r) the analytic expression due to
Wertheim and Thiele [19], ¢(r) has been obtained from a
numerical solution of (10) [28]; ¢(® is then recovered via

9).

( ?I‘he other two methods treated here are based on DF
theory for inhomogeneous fluids [25], where the excess
Helmbholtz free energy Fex[p(r)] is considered as a func-
tional of the inhomogeneous density p(r). In order to
design a model for Fe[p(r)] which takes into account
the main characteristics of the real system, several ap-
proaches have been proposed, as the local density ap-
proximation (LDA) (eventually including nonlocal cor-
rections), the smoothed density approximation (SDA)
[29], or the weighted density approximation (WDA) [30].

The methods used here are based on the WDA: while
the LDA assumes that p(r) varies in the range of the
interaction only smoothly, the WDA introduces the non-
locality of the free energy functional via a smoothed den-
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sity p(r) (corresponding to a mean density around a par-
ticle in r in a volume related to the range of the interac-
tion):

p(r) = / dr'p(x')w(| x — ' |; p). (12)

w(r; p) is a (possibly density-dependent) weight function.

The nth-order correlation functions of the homoge-
neous system are related to the nth-order functional
derivative of the excess Helmholtz free energy with re-
spect to p(r) and then taking the uniform limit p(r) — p
[25]:

BE™ Fex[p(r)]

B 500 Ly

™ (ry,...,Tn;p) =

The functional Fex[p(r)] is constructed to reproduce,
within this formalism, known properties of the homo-
geneous liquid such as, e.g., the excess free energy per
particle and/or the PDCF. An analytical determination
of Fg, is not always guaranteed (as, e.g., in the case of
the SDA [29] or the WDA of Curtin and Ashcroft [30]).
Furthermore, the determination of the weight function
w(r; p) may become in some cases a cumbersome numer-
ical task [30].

The two approximations treated here introduce the
WDA at different levels.

Kierlik and Rosinberg [10] introduce the WDA at the
level of Fex[p(7)]

Fulpl = [ dra(a(r), (19)

where 5 is a weighted average over the physical density
p [cf. (12)]. In contrast to Denton and Ashcroft (see be-
low), KR assume w(r) to be density independent; besides
that, w(r) is not uniquely determined (cf. discussion in
Ref. [10]). Using the weight function proposed by KR,
the TDCF may be expressed analytically (we do not re-
produce the somewhat lengthy expressions here).

Denton and Ashcroft [11, 12] make a weighted density
approximation for the one particle DCF

O (x; [p]) = <V 15(r), (15)
where
o) = [ ar'p(eyull £ — ¢ ;) (16)
and w(r) is uniquely obtained from requirement (13)
, _ M (ry; o))
c® (r1,72; [0l p(ry=p = T;z) o (17)

Once w(r) is determined, all higher-order CF’s may be
calculated via (13).

The results of the different methods will be presented
in r space; this was done especially with respect to
the SA and its improvements: there, the CF’s are di-
rectly obtained as functions of r. Comparison in q space
would require the determination of ¢ (q,¢’,q") via FT
of h®)(r, s,t); then Eq. (2) would be used, a calculation
which (i) has turned out to be extremely time consum-
ing since we need h(® (r,s,t) on a large and fine three-
dimensional grid and (ii) only limited accuracy for the
results can be guaranteed especially for small values of
g, ¢’, and ¢”. In contrast, a high degree of accuracy of
the FT of (2) for the other three methods (BHP, KR,
and DA) can be guaranteed since the integrands may be
extended sufficiently far in ¢ space with only a moderate
additional computational effort. Although parametriza-
tion of simulation data for h(®(r) and ¢ (r) exist [20],
we have used in this contribution for these two functions
the analytical expressions [19,27]. This was done in an ef-
fort to guarantee internal consistency of this study, since
in the present form the KR method is formulated only
in the PY approximation: this should affect the main re-
sults only marginally since this study has a comparative
character.

III. RESULTS

All calculations have been done on a VP50-EX com-
puter. In order to give to the reader an idea of how time
consuming the calculations may be, the description of the
most “expensive” parts of the respective algorithm and
the required CPU times are compiled in Table 1.

TABLE 1. Required CPU time for the determination of the TDF with different methods (in
CPU minutes on a VP-50).
Ay(r, 8) 210 min
T1(7, 8,t) 10 min
T2(r, 8, t) 300 min
Determination of TDF for ~ 100000 configurations 520 min
Solution of (10) 0.1 min
&Shp (a1, a2, a1+ q2 |) (A5) 40 min
FT consisting of Legendre transformation (A2) and radial integration (A3) 2 min
Determination of TDF for ~ 200 configurations 42 min
c® (analytic expression KR or DA) ~0 min
FT consisting of Legendre transformation (A2) and radial integration (A3) 31 min
Determination of TDF for ~ 400 configurations 31 min
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A. Angular dependence

In a first step we have compared the results of the
four above-mentioned methods for two different systems,
characterized by n = 0.3 and 0.45, considering for both
cases six different triplet configurations, keeping two of
the sides fixed and varying the enclosed angle. These
configurations are rather general ones with at most one
direct contact between the spheres (i.e., not too close
structures) and are characterized by different r and s
values, letting t range from |r — s| to (r + s) (i.e., let-
ting cos ¥ range between +1 and -1, where 9 is the angle
between r and s). The isosceles triangles are character-
ized by the (r,s) pairs (1.5, 1.5), (2.3, 2.3), and (3.0,
3.0), whereas the general triangles are described by the
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(r, s) values of (2.8, 1.5), (3.0, 2.0), and (4.0, 2.5). Al-
though ¢®(r, s,t) is a direct measure of the probability
to find three particles forming a triangle configuration
(r,s,t), we rather depict h(®(r,s,t). This was done to
emphasize those features that do differ in the different
approaches [the h’s in (4) are for all methods the same].
We would like to take the occasion to warn the reader
that representation of h(® might cause some misleading
conclusions when looking at the figures: (i) the maximum
value of h(3) is not directly related to the packing fraction
(as we know it intuitively from the pair case) and (ii) the
deviation of h(® from zero for stretched configurations
(cos® ~ —1) is compensated by the added h’s so that
finally g(® tends towards 1. Concerning the core condi-
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005 4t I
-01 * ' : ' 1 ' -02
-1 05 0 05 1A 05 0 05 1
X X
002 02
4 ot
0
001 F 4t 4 -1
-002 . . : ; ! : -02
-1 05 0 05 1 05 0 05 1
X X
002
0004 | -
- 1 oo
0002 |- -
s O\ AN /‘\ 0
0002 |- 1F 1 o
0004 |- -
! 1 L L L ! -002
-1 05 0 05 1 - 05 0 05 1

X

FIG. 1. h®(r,s,xz), z = cos?, as a function of (abscissa) for 7=0.3 and the following isosceles configurations (r, s):
top (1.5, 1.5), middle (2.3, 2.3), and bottom (3.0, 3.0). The scales of the different z ranges ([-1, 0.7/0.8] and [0.7/0.8, 1],

respectively) are found on the left (right) of the respective panels. Symbols: (i) left column: (---) SA, (- -) SA1, and (
) BHP.

SA2; (ii) right column: (---) KR, (- -) DA, and (
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tion [i.e., g¢®(r, s,t) = O for at least one of the arguments
being less than 1] we find for BHP, KR, and DA satis-
factory results within numerical accuracy (1-2% of the
value at contact). The results are presented in Figs. 1-4.

Let us first discuss a more global comparison and post-
pone discussions of specific characteristics of the respec-
tive methods. We also neglect for the moment the some-
times striking disagreement of the pure SA with the other
methods and discuss that later. As may be seen from
Figs. 1-4 good agreement—and this is independent of the
triangle size—is found for the degenerate configurations
at £ ~ 1, i.e., near contact. Differences in the results
then become visible as the triangles spread out, i.e., as =
decreases. However, we have to point out that a different
scale for z € [-1, 0.8/0.7] and z € [0.8/0.7, 1] (differ-
ences by a factor of 2 to 10) “blows up” differences in
h®: in this region h(® has decreased already sufficiently

and would contribute only marginally, e.g., in thermo-
dynamic calculations. Concerning the comparison KR,
DA, and BHP, a slight increase in the difference between
the results is observed for shorter distances and higher
packing fractions. In the comparison of SA1 and SA2
we find in general very good agreement, except for short
distance cases at low 7’s.

Differences of the respective results near and at the
contact of a few configurations are explained as follows:
in these configurations the contact value h® (r, s, | r—s |)
varies rapidly with » and s; hence different methods will
reproduce these changes in rather different ways. Inspec-
tion of neighboring configurations that differ in r and/or
s by one grid-step size shows that the usual good agree-
ment in encountered again [comparing this situation to
the pair case, we also know that different liquid-state the-
ories yield rather different results at or near the contact,
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L . . -005
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o
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o
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T
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FIG. 2. h®(r,s,z), £ = cos®, as a function of = (abscissa) for n=0.3 and the following general configurations (r, s): top
(2.8, 1.5), middle (3.0, 2.0), and bottom (4.0, 2.5). Scales and symbols as in Fig. 1.
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i.e., in the region where g(r) drops very rapidly].

While the above discussion was a rather general one,
we now want to work out specific features of the differ-
ent methods: the easiest judgement can be done on the
SA, which is obviously the most inadequate approxima-
tion for A®® and sometimes does not even nearly con-
tain characteristic information about the triplet struc-
ture: often the SA results are out of phase compared to
the rather qualitatively coherent picture represented by
the other methods and oscillations are in most cases too
weak. Hence we may conclude that the SA is a defini-
tively inadequate method to describe the triplet structure
of a liquid. The failure of the SA originates from the fact
that the influence of correlations of other particles to a
given triplet configuration are neglected; these influences
may be taken into account via 71 and 7. However, we
have to admit that from our results we could not find a

BERNHARD BILDSTEIN AND GERHARD KAHL
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clear tendency how further particles influence the triplet
structure: no distinct dependence on the density nor on
the geometrical configuration could be observed. In a di-
rect comparison of the DF-based methods (KR and DA)
we find the following: in the region 0.7 < z < 1 agreement
is very good (except for the cases near or at contact, as
discussed above). In the x region [—1, 0.7], the agreement
is a rather qualitative one: obviously the level where the
WDA is introduced does have a distinct influence on the
triplet structure. Therefore this study also does not give
us the possibility to decide which of the DF-based meth-
ods is the definitively superior one; only computer sim-
ulation results could give a definite answer. Concerning
the SA and its improvements we should expect that if we
consider the sequence SA-SA1-SA2 for a given triangle
configuration (r, s,t), the values of A3 (r, s, t) should—if
the expansion (6) is convergent—tend towards the “true”

[o15)
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g
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g L
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-015 1 I 1 04
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X
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A
0025 - 3 Al H 03
N
Loy = —F ] O
= A\
-0025 B - -4 -03
005 —L + L i . -06
-1 -05 0 05 1 -1 -05 0 05 1

FIG. 3. h®(r,s,z), z = cos®, as a function of z (abscissa) for 7=0.45 and the following isosceles configurations (r, s): top
(1.5, 1.5), middle (2.3, 2.3), and bottom (3.0, 3.0). Scales and symbols as in Fig. 1.
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value of this function (of course, we do not know this
function exactly). Although by including 7; and 7 a net
improvement over the SA is clearly visible, we do not
dare say that in general SA2 will be better than SA1, or,
equivalently, that SA2 values lie nearer to the true re-
sults than those obtained from SA1. On the other hand,
inclusion of 73(r, s,t) in (6), which might give us a more
definite answer to this question, is completely hopeless.
Finally, the results of the BHP method nicely fit into this
rather coherent qualitative picture which we obtain from
the different methods treated here. If quantitative dif-
ferences between the methods occur, they are observed
in those regions where h(®(r,s,t) has decreased suffi-
ciently. All these observations can directly be transferred
to the observable g(®(r, s, t), which differs, according to
(4), only by adding the functions h(?), which in turn are
for -all theories the same.

02

B. Radial dependence

For the study of the radial dependence of our re-
sults we have chosen two types of triangle configurations
(r, s, = cos¥), where ¥ denotes the angle between r and
s: isosceles triangles (r,r, ), r ranging from 1 to 3, using
three different = values (0.5, 0, —0.5) and general trian-
gles (r,2r,z), r ranging again from 1 to 3 and z being
—0.5, 0, and 0.5. These configurations have been consid-
ered for the two packing fractions of 0.3 and 0.45. The
results are depicted in Figs. 5-8. We observe that h(3
decreases very rapidly as the configurations spread out
(the scaling factors used in Figs. 5-8 for the r ranges [1,
1.3] and [1.3, 3] differ by a factor 20-60; this fact has to
be taken into account when making quantitative compar-
isons; this holds especially for the range [1.3, 3], where
remarkable difference of the results are observed).
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(2.8, 1.5), middle (3.0, 2.0), and bottom (4.0, 2.5). Scales and symbols as in Fig. 1.
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In the interesting range [1, 1.3] a satisfactory quanti- superposition approximation produces results which dif-
tative agreement is observed. SA1 and SA2 are in the fer in most cases strongly from the other data.
r range [1, 1.3] in good agreement, except for some con-

figurations near contact where differences of less than C. Rolling contact

10% are observed. In the comparison of KR, BHP, and ‘

DA, the DA method tends to differ in several configura- We now consider configurations of “rolling contact [5],”
tions by about 15% from the other two approximations, i.e., configurations where two spheres are separated by a
whereas KR and BHP agree in all configurations stud-  distance s and the third one moves along the surface of

ied rather well. In the less interesting region (r € [1.3, one of the two spheres (i.e., at a distance r=1); in the
3]), where h(® has dropped sufficiently, we observe that initial configuration, the third sphere is in direct con-
the different approaches are in general in phase, i.e., we  tact with the other two spheres, defining a minimum

observe qualitative agreement. The encountered differ- angle Ymin which is enclosed by r (=1) and s (hence
ences are in general larger for £=0.5, while agreement is  cos ¥min = $/2). The third sphere then moves, as de-
considerably better for the obtuse angle (z = —0.5). Dif-  scribed above, until a stretched configuration is obtained.

ferences between the methods typically range from 20%  Such configurations have been studied recently by Attard
(z = 0.5) to less than 10% (z = —0.5). Again, the pure  [5] in HS systems, using his “PY3” method; he obtains
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excellent agreement (practically identical results) with
(not too recent) computer simulations [18] for a system
characterized by n= 0.83687 /6. Our results are depicted
in Fig. 9 for four different s values, where we compare
data obtained from Attard’s method [31] with SA2 and
KR results; here we use a packing fraction n = 0.77/6.
The restriction to these two methods was done in an ef-
fort to limit the number of results; the data presented
in the two preceding subsections should give the reader
an idea by what extent BHP and DA differ from the
other two approximations. Although again the qualita-
tive behavior is quite similar for all methods, substantial
quantitative differences occur especially for the smaller
s values. While for larger distances s these differences
become of the order of magnitude as encountered in the
previous parts of the study, the situation is different for
closed configurations: the smallest s values represent tri-
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angle configurations where the spheres form very close
packed structures; substantial differences for the h(® re-
sults are observed in these cases. This may remind us of
the pair case: PY and (e.g.) HNC g (r) also differ for
z values near contact substantially (especially for higher
packing fractions). Hence our results indicate that the
sensitivity of the contact value of an n-particle DF is
also observed in the triplet case.

IV. CONCLUSIONS

In this study we have presented numerical results of
the TDF obtained from several methods which have been
proposed during the past years. The system we have
taken into account is a fluid of hard spheres. Due to
the lack of extensive and recent results of computer ex-
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periment in r space, we have compared these methods
among themselves, which allows us to draw conclusions
of how consistent present-day methods for the determina-
tion of triplet correlation functions are. We find, despite
the different origins of these methods, a rather coher-
ent picture, i.e., we find for not extremely close-packed
triplet configurations that in general rather good quali-
tative agreement is encountered. The quantitative agree-
ment is found to be very good for larger distances; dis-
agreement between the methods increases as we shorten
the distances and we finally encounter substantial differ-
ences in those configurations where all three spheres are
in very close contact. In general, agreement is slightly
worse for higher packing fractions. Finally, in all cases
the Kirkwood SA is found to be an inadequate approxi-
mation for A(®® which does not contain characteristic in-
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formations about the triplet structure; hence we strongly
advise not using it.
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APPENDIX: NUMERICAL DETAILS

If we assume the definition of the FT’s (3) and let 9 (¢)
be the angle between r and r’ (q and q’) and = = cos ¥,
Yy = cos ¢, then
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fe,x) = f(r,r', @) = filr,r) Pi(z), (A1)
l

fla.d) =Ffa.dv) =) fila,d)P), (A2)
l

where
AN 4 ll
filr,7') = W(_ )

o0
x /0 dq1d 92030351 (q17)51(g57) fi(ar, 42),
(A3)
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fila,d') = 167%(~1)!
x /0 dridrardrdii(ria)iulrad) filri, ra).
(A4)

The j;(x) are the standard spherical Bessel functions.
We now turn to the numerical parameters of the dif-
ferent methods. (i) In the SA and its improvements
(SA1 and SA2) the diagrams representing 71 (r, s,t) and
T2(r, 8,t) are calculated using the well-known Legendre-
expansion technique [26]. Although tables exist in
Ref. [2] how to determine this coefficients, we want to
take this occasion to point out an obvious misprint in
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these papers: there the expression for the seven-bond
diagram is obviously not symmetric in 7 and s (as it,
of course, should be), whereas our formula fulfills this
requirement. The prescription of how to evaluate the
diagrams (7) and (8) using the Legendre-expansion tech-
nique is summarized in Table II, the expansion coeffi-
cients are presented in Table III. Table III also contains
the actual numerical parameters used in our calculations,
i.e., both the upper summation limits of the expressions
as well as the grid and the mesh size on which these
coefficients and hence 7, and 7 were determined. The
respective parameters (both the summation index as well
as the range of the grid) have found to be sufficient to
guarantee an accuracy of 1-2 % (on the average) of the fi-
nal results. The diagrams 7; and 75 have been calculated
on a three-dimensional grid (7, s,t), each side extending
over six HS diameters (beyond the core) containing 61
grid points. The seven-bond diagram has been evalu-
ated on a 36 x 36 x 36 grid, extending over 3.5 HS
diameters (beyond the core); this reduction in distance
is both due to numerical reasons (summation over five in-
dices is extremely time consuming) and to the fact that
Himnpq(r, s) decreases rapidly in distance.

(i) In the BHP method, £(g) was determined numeri-
cally, as described in the Appendix of Ref. [4], from solv-
ing the FT of Eq. (10); ¢(q) then served to construct
&aq,q’) via

14
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08

14

s=18

[M,sx)

06 L L L

-1 -05 0 05
X

1

&a,q) = @ [aaniaa-a'nia +a" da’

o0
=é(q,q,y) =Y _ &0, 9)P(y).
=0

(A5)

éi(q,q') was determined on a 200 x 200 grid in (g,q’)
space with a mesh size of 0.2; the actual summation in
(A5) was performed for ! = 0 to 31.

h{3)(r,s,t) was obtained both for BHP and the DF-
based methods via a FT of (2): the first three summands
are transformed directly (i.e., not numerically) into prod-
ucts of h(r)’s of appropriate r arguments, and the re-
maining last term is transformed numerically using rela-
tion (A3).

Of course h®(r, s, z) is discontinuous for HS along the
contact, but it turns out that the first three terms of (2),
i.e., the products of h's, represent the major part of this
discontinuity so that the FT of the last term is a rather
well-behaved function across the contact.

(iii) In both DF-based methods the radial integrations
(A3) extend over 400 grid points (Aq = Agq’ =0.1). The
discrete Legendre transformation proposed by Attard [5]
includes 64 angular nodes. h(®(r,r’) was then obtained
as described above.
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FIG. 9. I'(1,s,2) = ¢®(1,s,2)/[9(1)g(s)g(t)], z = cos®, and t* = 1 + s* — 2sz as a function of = for n = 0.77/6 and

different s values as indicated. Symbols: (

) PY3 (Ref. [31]), (---) SA2, and (- -) KR.
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TABLE II. Legendre expansion of the diagrams representing 71(r, s,t) (7) and 72(r, s, t) (8). ¢
is the angle between r and s. The actual upper limits of the different summations and the (r, s)
ranges over which the diagrams have been calculated may be seen from the respective columns of
Table III. © are the Legendre functions as defined in Table III.

oo
F(t) = > Au(r,5)Pi(cos D)
1=0
oo
Three-bond diagram = 4#281 (7, 8) 57 Pi(cos 6)
1=0
Five-bond diagram = 1672 ZE; (r,s) (_27'41-_1)7})’ (cos )
=0
oo
Six-bond diagram = 1672 Z €tmnFimn (7, s)#ﬁPn(cos 9)
l,m,n=0

oo
1
Z Himnpg(r, 8) Z5mrr TICmiD@Ent )V TI(2e+ D)
t,m,n,p,q=0
min{mnq}

X Z Om —;j(cos¥)O,4 —;(cos 79)7£pq'77];lm

j=-min{mngqg}

Seven-bond diagram = 6472

TABLE III. Expressions of how to determine the Legendre expansion coefficients of the diagrams
representing 71(r, s,t) (7) and 72(r, s,t) (8). f stands for h{®(r). The second column contains the
upper limits of the indices (I, m,...) of the coefficients used in this calculation. Columns three and
four contain the range in 7, s, and t (column three) and the mesh size (column four) of the grid on
which the coefficients were calculated (both in units of the HS diameter). The integrations in the

range [0, 1] [where h® (r) = —1] were performed—wherever possible—analytically.
Ai(r,s) = (1 + %)/:dﬂ sin ¥ P;(cos 9) f(t) 30 [1, 7] 0.05
By(r,s) = /wdttzf(t)A;(r, t)A(s,t) 30 11, 7] 0.05
0
Ey(r,s) = /wdt t2f(t) Ai(r, t) Bi(s, t) 14 [1, 7] 0.10
0
Fimn(r,s) = /oodt t2f () Ai(r,t) B (1, ) An (s, t) 14 1,7 0.10
0
Gnpq(t,r,8) = /ooduuzf(u)An(t,u)Ap(r, u)Aq(s,u) 14 (1, 4.5] 0.10
0
Himnpqe(r,8) = /oodt t2f(t) Au(r, t) Am (8, 8)Grpq(t, Ty 8) 14 (1, 4.5] 0.10
0

imn = 1 / =Pi(2) P (2) P (2)

1
Yipg = / 4 015 ()©po(2)O _5(a)
-1

Oum(z) = (=1)™O1 —m(z) = (-1)™/ CLEEPE(1 - o)™/ 2 £ Pi(a)
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